已知函数f(x)=x^3-x,设a>0,若果过点(a,b)可作曲线y=f(x)的三条切线,证明:-a
人气:255 ℃ 时间:2020-03-29 06:33:59
解答
假设切点为(m,m³-m),那么可得到方程(m³-m-b)÷(m-a)= 3m² - 1.
上诉方程可化简为 2m³-3am²+a+b = 0,因为要保证这个方程有3个不同的解才能保证有3条切线,每个解都是切点的横坐标,令 g(x) = 2x³-3ax²+a+b,那么我们的目标就是保证这个三次曲线有3个不同的零点.dg(x)/dx = 6x²-6ax = 0可求出这条三次曲线的两个极值点 x1 = 0,x2 = a,易知这两个是不相等的,因为a>0,所以要保证这个三次曲线有3个不同零点的话必然得满足
g(0)>0,g(a)<0,于是我们可以得到 a+b>0,a³-a>b,所以上述不等式得证.
推荐
- 已知函数f(x)=x^3-x设a>0,如果过曲线f(x)外的点(a,b)可作曲线y=f(x)的三条切线,证明-a
- 设函数f(x)=ax+1/x+b(a,b属于Z)曲线y=f(x)在点(2,f(2))处的切线方程为y=3.证明曲线y=f(x)上任意一点处的切线与直线x=1和直线y=x所围成的三角形面积为定值并求此定值
- 已知函数f(x)=x^3-3x,设a大于0,如果过点P(a,b)可作曲线y=f(x)得三条切线,证明-a小于b小于f(a)
- 设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线率为2. (Ⅰ)求a,b的值; (Ⅱ)证明:f(x)≤2x-2.
- 已知函数f(x) =x^3-x,1,求曲线y=f(x)过点(1,0)的切线方程
- 某银行在某时间段内办理了以下业务:取出950元,存入500元,取出800元,存入1200元,取出1025元,存入2500元,取出200元.请你计算一下:银行在这段时间内总计是存入或取出多少元.(用有理数的减法做)
- it is( )and helps me learn a lot( )things.
- "浅草才能没马蹄“ 才能咋解释?
猜你喜欢