> 数学 >
解一道微分方程!y"-2y'=2e^x; y(1)=-1,y'(1)=0
人气:388 ℃ 时间:2020-07-04 20:39:40
解答
y"-2y'=2e^x; y(1)=-1,y'(1)=0
特征方程λ^2-λ=0.解得λ1=0.λ2=2.所以对应齐次方程的通解为:C1+C2e^(2x).
方程有特Ae^x.带入得:
Ae^x-2Ae^x=2e^x.所以:A=-2.
所以方程的通解为:y=C1+C2e^(2x)-2e^x;y'=2C2e^(2x)-2e^x.
因为:y(1)=-1,y'(1)=0,所以:
C1+C2*e^2-2e=-1.
2C2*e^2-2e=0.
所以:C1=e,C2=e^(-1).所以所求的方程为:
y=e+e^(2x-1)-2e^x.
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版