求微分方程y″-3y′+2y=2xex的通解.
人气:142 ℃ 时间:2020-04-04 08:24:34
解答
对应齐次方程y″-3y′+2y=0的特征方程为
λ2-3λ+2=0,
解得特征根为λ1=1,λ2=2.
所以齐次微分方程y″-3y′+2y=0的通解为 y1=C1ex+C2e2x.
因为非齐次项为 f(x)=2xex,且 a=1 是特征方程的单重根,
故设原方程的一个特解为y*=x(ax+b)ex,
代入原方程得:
a=-1,b=-2,
故特解为y*=x(-x-2)ex.
所以原方程通解为
y=y1+y*=C1ex+C2e2x+x(-x-2)ex.
推荐
猜你喜欢
- 弯弯的月儿小小的船,小小的船儿两头尖,我在小小的船里坐,只看见闪闪的星星蓝蓝的天.
- 描写春天的拟人句
- 369-342÷9的简便计算
- 1,-1/2,1/3,-1/4,1/5,-1/6.等等,按此规律,第2008个数是多少?如果一直排下去会合什么数接近?
- 小六数学题一道
- Paul has a pet parrot named Smarty.的另外两句同义句是什么?
- 文字求真的意思
- 英语翻译