
根据DE∥BC,可以得到
| DE |
| BC |
| AN |
| AM |
| AD |
| AB |
| x |
| 4 |
则DE=
| x |
| 4 |
| x |
| 4 |
(1)当D为AB中点时,DE是三角形ABC的中位线,
则DE=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴S△DEC=S′=
| 1 |
| 2 |
∴S1:S的值是1:4;
(2)作AM⊥BC,垂足为M,交DE于N点,
∵DE∥BC,∴△ADE∽△ABC,
∴
| AN |
| AM |
| DE |
| BC |
| AD |
| AB |
| x |
| 4 |
∴
| MN |
| AM |
| 4-x |
| 4 |
| S′ |
| S |
| 1 |
| 2 |
| 1 |
| 2 |
| DE |
| BC |
| MN |
| AM |
| x |
| 4 |
| 4-x |
| 4 |
| 4x-x2 |
| 16 |
即y=-
| x2 |
| 16 |
| 1 |
| 4 |

