∴PA⊥CD,
又∵四边形ABCD是矩形,
∴AD⊥CD
又∵AD∩PA=A
∴CD⊥平面PAD,
又∵PD⊂平面PAD,
∴CD⊥PD
故∠PDA即为平面PCD与平面ABCD所成锐二面角的平面角,
又∵在直角三角形PAD中,PA=AD
∴∠PDA=45°
即平面PCD与平面ABCD所成锐二面角为45°
(2)证明:取PD的中点E,连接AE,EN,如下图所示
则EN∥CD∥AM,且EN=
1 |
2 |
∴四边形AMNE为平行四边形,故AE∥MN…①
由(I)中CD⊥平面PAD,得AE⊥CD
又∵三角形PAD为等腰直角三角形,
∴AE⊥PD
∵PD∩CD=D
∴AE⊥平面PCD
由①得:MN⊥平面PCD
又∵MN⊂平面MND
∴平面MND⊥平面PCD.