数列{an}的前n项和Sn=-n²;,数列{bn}满足b1=2,bn+1=3bn-t(n-1),已知an+1+bn+1=3(an+bn)
对任意实数n属于正整数都成立
1.求t
2.设数列{an²+anbn}的前n项和为Tn,问是否存在不相等的正整数m,k,r,使得m,k,r成等差数列,且Tm+1,Tk+1,Tr+1成等比数列?若存在,求m,k,r的值,若不存在,说明理由.
人气:199 ℃ 时间:2020-06-15 07:10:12
解答
1、n=1时,a1=S1=-1²=-1n≥2时,Sn=-n²+(n-1)²=-2n+1n=1时,a1=-2+1=-1,同样满足数列{an}的通项公式为an=-2n+1a(n+1)+b(n+1)=3(an+bn)-2(n+1)+1+b(n+1)=3(-2n+1+bn)b(n+1)=3bn-4n+4=3bn-4(n-1)又b(n+1)=...
推荐
- 设数列{an}的前n项和为Sn=-n²,数列{bn}满足:b1=2,b(n+1)=3bn-t(n-1),已知a(n+1)+b(n+1)=3(an+bn)对任意n属于自然数集都成立.设数列{an²+anbn}的前n项和为T
- 已知数列{an}的前n项和Sn=1/2(n²-n+2),数列{bn}的首项b1=1,且bn-b(n-1)=1/2^(n-1)(n≥2)
- 数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n. (1)设cn=an-1,求证:数列{cn}是等比数列; (2)求数列{bn}的通项公式.
- 已知数列{an}的前n项和Sn=2^n,数列{bn}满足b1= -1,bn+1=bn+(2n-1)
- 已知数列{an}的前n项和Sn=3n²+5n,数列{bn}中,b1=5,64bn+1-bn=0,是否存在常数c使得一切n∈N+,an+logcbn恒为常数吗?若存在,求出常数c和m的值;若不存在,说明理由.(答案是存在,
- 一个50千克的物体自由下落时,重量是多少
- 用一个平面截一个棱柱无论以何种方式切割得到的截面一定是什么图形?
- 再塑生命 课后字词造句
猜你喜欢