已知数列{an}是正数组成的数列,其前n项和为Sn,对于一切n∈N*均有an与2的等差中项等于Sn与2的等比中项.
(1)计算a1,a2,a3,并由此猜想{an}的通项公式an;
(2)用数学归纳法证明(1)中你的猜想.
(1)由此猜想{an}的通项公式an=4n-2(n∈N+).
(2) )假设当n=k时,等式成立,即ak=4k-2,
∴ak+1=Sk+1-Sk=[(ak+1)+2]^2/8- [(ak)+2]^2/8
∴(ak+1+ak)(ak+1-ak-4)=0.
又ak+1+ak≠0,
∴ak+1-a4-4=0,
∴ak+1=ak+4=4k-2+4=4(k+1)-2,
∴当n=k+1时,等式也成立.
由(Ⅰ)(Ⅱ)可得an=4n-2(n∈N+)成立.
本人想问的是题中 [(ak+1)+2]^2/8- [(ak)+2]^2/8
∴(ak+1+ak)(ak+1-ak-4)=0.怎么得到的,
不是 ak+1=Sk+1-Sk吗?怎么变成等比中项拉。晕 还有(ak+1+ak)(ak+1-ak-4)=0.怎么得到的?
人气:181 ℃ 时间:2020-10-02 02:13:50
解答
本来想仔细打的,结果好多符号都不会打,知道说说了.根据“an与2的等差中项等于Sn与2的等比中项“的式子化简整理成Sn等于什么的样子带到”ak+1=Sk+1-Sk“中就能得到”[(ak+1)+2]^2/8- [(ak)+2]^2/8 “.再把”a...
推荐
- {an}是正数组成的数列,其前n项和为Sn,并且对所有正整数n,an与2的等差中项等于Sn与2的等比中项
- 设{an}是正数组成的数列,其前n项和为Sn,且对所有的正整数n,an与2的等差中项等于Sn与2的等比中项,求:数列{an}的通项公式.
- 设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n∈N+,am与2的等差中项等于Sn与2的等比中项
- 设数列{an}是正数组成的数列,其前n项和Sn,且对任意n属于N*,an与2的等差中项等于Sn与2的等比中项,求
- 设{an}是正数组成的数列,其前n项和为sn,且an与2的等差中项等于sn与2的等比中项.求此数列的前三项及通项
- 一个长6米,宽3米,高2米的房间,放一根竹竿,竹竿最长多少米?
- (2012•顺义区二模)下列关于有机物的叙述正确的是( ) A.汽油、柴油和植物油都是碳氢化合物 B.棉花和合成纤维的主要成分均为纤维素 C.乙烯和苯蒸气都能使溴水褪色,不能鉴别乙烯
- 什么情况下1+1等于3?
猜你喜欢