在三角形ABC中,a、b、c分别是角A、B、C的对边,且1+cos(π+2A)=2sin2[﹙B+C﹚÷2]
(1)求角A的大小;(2)当a=6时,求其面积的最大值,并判断此时三角形ABC的形状
2sin^2[﹙B+C﹚÷2]
人气:281 ℃ 时间:2020-03-25 05:02:34
解答
(1)1+cos(π+2A)=1-cos2A=2sin^2A=2(1-cos^2A)=2sin^2[(B+C)/2]=1-cos(B+C)=1+cosA
=>cosA=1/2 =>A=60°
(2)由正弦定理,a/sinA=b/sinB=c/sinC=4√3
=>b=4√3sinB,c=4√3sinC
=>S=1/2*b*c*sinA=12√3sinBsinC
sinBsinC=-1/2[cos(B+C)-cos(B-C)]=1/2[cos(B-C)-1/2]
当cos(B-C)=1,即B=C=60°时,sinBsinC取最大值,此时面积即有最大值S=3√3.
ΔABC为等边三角形能不能帮我看一下1/2[cos(B-C)-1/2]这一步是不是算错了,应该是1/2[cos(B-C)+1/2]最大S=9√3,对么?谢谢,如果解答,可以加分哈哈,你算对了,不好意思啊,谢谢指正
推荐
- 在△ABC中,a,b,c分别是角A,B,C的对边,且1+cos(π+2A)=2sin2B+C/2. (1)求角A的大小; (2)当a=6时,求其面积的最大值,并判断此时△ABC的形状.
- 在三角形ABC中,a、b、c分别是角A、B、C所对的边,且cos(A+B)=-1/2.
- 在三角形ABC中,角A,B,C所对的边分别为a,b,c且f(A) =2cosA/2sin(派-A/2)+sin^2A/2-cos^2A/2 (1)求 函数f(A)的最大值(2)若f(A)=0,C=5派/12,a= 根号6,求b的值
- 在△ABC中,角A、B、C所对的边分别为a、b、c.若b−c=2acos(π3+C),求角A.
- 在三角形abc,a b c分别是角a b c的对边 且(2a-c)cos*b=b*cos*c 求角b
- 月光曲:“弹得多纯熟啊!感情多纯真啊!"意思
- 英语的元音字母是什么意思?
- SèYeah,we live should be like this,
猜你喜欢