设数列{a
n}前n的项和为S
n,且(3-m)S
n+2ma
n=m+3(n∈N
*).其中m为常数,m≠-3且m≠0
(1)求证:{a
n}是等比数列;
(2)若数列{a
n}的公比满足q=f(m)且
b1=a1=1,bn=f(bn−1)(n∈N
*,n≥2),求证
{}为等差数列,并求b
n.
人气:103 ℃ 时间:2020-05-10 20:33:51
解答
(1)由(3-m)Sn+2man=m+3,得(3-m)Sn+1+2man+1=m+3,两式相减,得(3+m)an+1=2man,(m≠-3)∴an+1an=2mm+3,∴{an}是等比数列.(2)由b1=a1=1,q=f(m)=2mm+3,n∈N且n≥2时,bn=32f(bn-1)=32•2bn−1bn...
推荐
- 设数列an前n项和为Sn,且(3-m)Sn+2man=m+3,其中m为常数,且m不等于—3,求证an是等比数列
- 数列{an}前n项和为Sn且(3-m)Sn+2man=m+3(n属于N*)其中m为常数且m
- 设数列{an}的前n项和为Sn,且(3-m)Sn+2MAn=m+3(m∈N*),其中m为常数且m≠-3,求证:{an}为等比数列.
- 设数列{an}前n项和为Sn,且(3-m)Sn+2man=m+3(n属于N*).其中m为实常数,m不等于-3且m不等于0.
- 设数列{an}的前n项和为Sn,且(3-m)Sn+2MAn=m+3(m∈N*),其中m为常数且m≠-3,求证:{an}为等比数列.
- 糖蛋白受体蛋白,载体蛋白的不同
- 10x²+30x+20约分 怎么会变成10(x+1)(x+2) x³+2x²-x-2约分怎么变成(x+2)(x+1) (x-1)
- x-3/8x+110=75%+10
猜你喜欢