试判断下列方程是不是所给曲线的方程,并说明理由:
)以原点为圆心、4为半径的圆的方程是y=sqrt(16-x^2).
答:
y=sqrt(16-x^2)不是以原点为圆心,4为半径的圆的方程.
【因为这个圆上的点的坐标不都是方程y=sqrt(16-x^2)的解,例如点P(0,-4)是这个方程上的点,但它的坐标不是方程y=sqrt(16-x^2)的解.】
加括号那段话,实在是看不懂,
人气:253 ℃ 时间:2020-06-23 05:10:39
解答
后面这句话想要说明的是,除了方程本身你还需要考虑定义域.y的值域为[0,4],所以该曲线是上半个圆,而不是整个圆.
推荐
猜你喜欢
- 有关基因工程的基本工具的几个简答题.
- (1)在微风中,在阳光下,燕子斜着身子在天空中掠过,“唧”的一声,已由这边的稻田上,飞到那边的柳树下了;还有几只横掠过湖面,剪尾或翼尖偶尔沾了一下水面,那小圆晕便一圈一圈地荡漾开去.这一段描写了小燕子活泼机灵的特点.
- 正五边形能不能密铺、正八边形呢?
- 一个圆形舞台,直径是20米,它的周长是多少米?如果在舞台上铺设每平方米80元的木板,至少需要多少元?
- 10-20毫克/千克的赤霉素+0.3%的尿素是什么意思
- 当铝原子变成离子 那么它的核电荷数是多少
- 反法西斯战争的有哪些国家
- 当√2-x有意义时,化简√x2-4x+4-√x2-6x+9的结果