在ΔABC中,∠C=90°,P为三角形内一点,且S(PAB)=S(PBC)=S(PCA).
求证:PA^2+PB^2=5PC^2.
人气:314 ℃ 时间:2019-08-18 19:11:10
解答
证明 已知ΔABC是直角三角形,AB为斜边,记AB=c,BC=a,CA=b.则有:
c^2=a^2+b^2. (1)
满足:S(PAB)=S(PBC)=S(PCA),易证P是RtΔABC的重心.
设mc,ma,mb分别表示RtΔABC的对应边AB,BC,CA上的中线,则有
PC=2mc/3, PA=2ma/3, PB=2mb/3.
而三角形中线公式为:
4(mc)^2=2a^2+2b^2-c^2,
4(ma)^2=2b^2+2c^2-a^2,
4(mb)^2=2c^2+2a^2-b^2.
欲证明PA^2+PB^2=5PC^2,等价于证明
4(ma)^2+4(mb)^2=20(mc)^2 (2)
因为在RtΔABC中,4(mc)^2=2a^2+2b^2-c^2=c^2
而4(ma)^2+4(mb)^2=4c^2+a^2+b^2=5c^2.
所以(2)式成立.
推荐
- 在△ABC中,角C=90°,p为三角形内一点,且S△PAB=S△PBC=S△PCA.
- 在△ABC中,∠C=90°,P为三角形内的一点,且S△PAB=S△PBC=S△PCA,求证│PA│^2+│PB│^2=5│PC│^2
- 在三角形ABC中,角C=90°,P为三角形内一点,且S三角形PAB=S三角形PBC=S三角形PCA.
- 在三角形ABC中,角ABC=40°,角ACB=40°,p为三角形内的一点,且角PCA=20°,角PAB=20°,求角PBC的度数.
- P是三角形ABC所在平面外一点,A’B’C’分别是三角形PBC,三角形PCA,三角形PAB的重心
- 著名的亚里士多德曾认为低音传播速度比高音慢,你能用学会的知识反驳他的错误吗?
- 用滑轮组以不同的速度~~~
- 一梯形的面积为100平方厘米,则该梯形的高y(cm)关于中位线x(cm)的函数解析式是
猜你喜欢