可以的,因为轴对称的三角形至少是等腰三角形,也就是两个底角相等.划一条线的话,分割出的三角形中一定会留下∠A、∠B、∠C中的一个角.假设割出的三角形中留下的是∠C,那么底角一定是45°,尝试可知,这条割线割出的剩余部分的四边形一定不是轴对称.所以假设不成立.继续假设割出的三角形中留下的是∠A,那么如果是∠A是顶角,则底角为75度,其补角为105度,割线割出的剩余部分的四边形也不可能是轴对称.
但当∠A是底角时,等腰三角形另一个底角也是30度,则顶角为120度,其补角为60度,正好等于∠B,所以剩余的部分可以是轴对称的四边形(因为有一对对角相等)
比如:假设割线与AC交于D,与AB交于E,则当∠AED=30度(即等腰三角形另一个底角),∠ADE=120度(顶角),平移割线DE,直到当DE=BE时,三角形ADE是等腰三角形(轴对称),且四边形BCDE是轴对称的四边形(CE为轴)