点m.n分别在正三角形abc的bc.ca边上且bm=cn又am.bn交与点q
1.问BM=CN与结论角BQM=60°交换后是否正确
2.若将题中的条件点M.N分别移动到BC.CA的延长线上.是否扔能得到角BQM=60°
3.点M.N分别在正三角形ABC的BC.CA边上改为点M.N分别在正方形ABCD的BC.CD上.是否仍能得到角BQM=60°
急.
人气:331 ℃ 时间:2019-08-31 15:04:00
解答
1.由条件,如果BM=CN,
可得△BMC≌△MAB,
∴∠NBC=∠MAB,
∠BQM=∠MAB+∠ABN=∠NBC+∠ABN=60°成立.
同样,由∠BQM=60°,可推得BM=CN.
2.∠BQM=60°不变.
3.不可以,∠BQM=90°,
由△BCN≌△ABM,
∴∠BAM=∠CBN,
又∠CBN+∠ABN=90°,
∴∠BAM+∠ABN=90°
∴∠BQM=90°.
规律:正多边形中,
M,N分别是CD,DE上的点,
连AM,BN交于Q,
则∠BQM=(n-2)×180°/n.
其中n正多边形的边数.
推荐
- △ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,BN与AM相交于Q点,∠AQN等于多少度?
- (1)如图,正△ABC中,点M与点N分别是BC、CA上的点,且BM=CN,连接AM、BN,两线交于点Q,求∠AQN的度数. (2)将1题中的“正△ABC”分别改为正方形ABCD,正五边形ABCDE,正六边形ABCDEF,…,
- 已知△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于点Q.下面给出了三种情况(如图①,②,③),先用量角器分别测量∠BQM的大小,然后猜测
- 如图,已知△ABC为等边三角形,点M是线段BC上任意一点,点N是线段CA上任意一点,且BM=CN,直线BN与AM相交于点D. (1)猜测:线段AM和BN有怎样的数量关系?并给出你的证明; (2)求∠ADN的
- 已知△ABC为等边三角形,点M,N分别在射线BC和射线CA上,且BM=CN,若BN与AM相交于点P,求角BPM的度数.
- dutch 到底是德国还是荷兰?
- 先观察有什么规律,填写空格-1,1,0,1,1,2,( ),5,
- 急死啦,英语词
猜你喜欢