一圆经过A(4,2),B(-1,3)两点,且在两坐标轴上的四个截距和为2,求此圆方程.
人气:265 ℃ 时间:2019-08-22 14:00:17
解答
设圆的方程为x2+Dx+y2+Ey+F=0,
将A(4,2),B(-1,3)两点代入进方程中,
得到:E=5D+10,F=-14D-40,
因为四个截距为2,所以-D-E=2,
所以解得:D=-2,F=-12,E=0,
所以圆方程为x2-2x+y2-12=0,即(x-1)2+y2=13.
推荐
猜你喜欢
- 设z=yf(x^2-y^2),其中f(u)为可微分函数,证明y^2 əz/əx +xy əz/əy=xz
- 设集合A={1,2,3,4,5,6,7,8,9,10}求所有的集合A的3元子集合(含有3个元素的子集)元素的和
- 大师…这个越语ban dang lam j day?ban da ngu chua……翻译成中文是什么意思?
- 暑假里王阿姨买了一台柜式空调长0.5米宽0.6米这台空调占有的空间有多大?
- 2 4 198
- 何谓高斯投影?高斯投影为何要分带?如何进行分带?
- 40+40%x=60(要过程)
- 关于初中物理的压力压强