(1)过点F作FM∥AC,交BC于点M,∵F为AB的中点,
∴M为BC的中点,FM=
| 1 |
| 2 |
∵FM∥AC,
∴∠CED=∠MFD,∠ECD=∠FMD.
∴△FMD∽△ECD.
∴
| DC |
| DM |
| EC |
| FM |
| 2 |
| 3 |
∴EC=
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
∴
| AE |
| AC |
| AC−EC |
| AC |
AC−
| ||
| AC |
| 2 |
| 3 |
(2)∵AB=a,
∴FB=
| 1 |
| 2 |
| 1 |
| 2 |
∵FB=EC,
∴EC=
| 1 |
| 2 |
∵EC=
| 1 |
| 3 |
∴AC=3EC=
| 3 |
| 2 |

| AE |
| AC |
(1)过点F作FM∥AC,交BC于点M,| 1 |
| 2 |
| DC |
| DM |
| EC |
| FM |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| AE |
| AC |
| AC−EC |
| AC |
AC−
| ||
| AC |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 3 |
| 2 |