如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接DG.(1)求证:△AED
人气:354 ℃ 时间:2019-08-18 14:22:14
解答
①∵ABCD为菱形,∴AB=AD.
∵AB=BD,∴△ABD为等边三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
∴△AED≌△DFB;
②延长FB到G',取BG'=DG,连接CG',
易证出 △CDG≌△CBG'(SAS)
∴∠DCG=∠BCG',CG=CG'
∠DCB=∠GCB+∠BCG'=60°,
∴△CGG'为等边三角形
S四边形BCDG=S△CGG'=1/2×根3/2CG×CG=根3/4CG2.
③∵△AED≌△DFB,AF=2DF.
易证△DFG∽△DEA
∴FG:AE=DF:DA=1:3,
则 FG:BE=1:6=FG:BG,
即 BG=6GF.
推荐
- 如图,在菱形abcd中,ab=bd,点e·f分别在ab·cd上,且ae=df,bf与de相交于点g.求DG+BG=CG
- 在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF.连接BF,DE,BF与DE相交于点G,连接CG,
- 菱形ABCD,F在AC上,DF交AB于E求证∠FBC=∠AED
- 如图:菱形ABCD中,E是AB上一点,DE交AC与F,求证:∠FBC=∠AED
- 如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论: ①△AED≌△DFB;②S四边形BCDG=34CG2;③若AF=2DF,则BG=6GF. 其中正确
- 为什么要10+12+12-(28+40+20-64)这样算?
- 根据U=E-Ir,怎样得出电动势E=(I1U2-I2U1)/(I1-I2)及电源内阻r=(U2-u1)/(I1-I2)?
- 伏尔加河与乌拉尔河的水文特征的区别是什么
猜你喜欢