> 数学 >
如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接DG.(1)求证:△AED
人气:354 ℃ 时间:2019-08-18 14:22:14
解答
①∵ABCD为菱形,∴AB=AD.
∵AB=BD,∴△ABD为等边三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
∴△AED≌△DFB;
②延长FB到G',取BG'=DG,连接CG',
易证出 △CDG≌△CBG'(SAS)
∴∠DCG=∠BCG',CG=CG'
∠DCB=∠GCB+∠BCG'=60°,
∴△CGG'为等边三角形
S四边形BCDG=S△CGG'=1/2×根3/2CG×CG=根3/4CG2.
③∵△AED≌△DFB,AF=2DF.
易证△DFG∽△DEA
∴FG:AE=DF:DA=1:3,
则 FG:BE=1:6=FG:BG,
即 BG=6GF.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版