> 数学 >
已知:如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且∠B+∠D=180°,求证:AE=AD+BE.
人气:377 ℃ 时间:2020-10-02 03:22:47
解答
证明:在AE上截取AM=AD,连接CM,
∵AC平分∠BAD,
∴∠1=∠2,
在△AMC和△ADC中
AC=AC
∠1=∠2
AD=AM

∴△AMC≌△ADC(SAS),
∴∠3=∠D,
∵∠B+∠D=180°,∠3+∠4=180°,
∴∠4=∠B,
∴CM=CB,
∵CE⊥AB,
∴ME=EB(等腰三角形底边上的高线与底边上的中线重合),
∵AE=AM+ME,
∴AE=AD+BE.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版