> 数学 >
已知如图,△ABC是等边三角形,P是三角形外的一点,且∠ABP+∠ACP=180°.
求证:AP平分∠BPC.
人气:490 ℃ 时间:2020-04-15 21:23:39
解答
证明:过点A作AM⊥BP,AN⊥PN,交PC的延长线于点N,
可得出∠AMB=∠ANC=90°,
∵∠ACN+∠ACP=180°,且∠ABM+∠ACP=180°,
∴∠ACN=∠ABM,
又△ABC是等边三角形,
∴AB=AC,
在△ABM和△ACN中,
∠AMB=∠ANC
∠ABM=∠ACN
AB=AC

∴△ABM≌△ACN(AAS),
∴AM=AN,又AM⊥BP,AN⊥PN,
∴PA平分∠BPC.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版