在平面直角坐标系xoy中,抛物线y=x^2上异于坐标原点O的两不同动点A、B满足AO垂直于BO.求证直线AB过定点
人气:396 ℃ 时间:2019-10-17 14:25:55
解答
在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图所示).则△AOB得重心G(即三角形三条中线的交点)的轨迹方程为 y=3x^2+2/3然直线AB的斜率存在,记为k,AB的方程记为:y=kx+b,(b...
推荐
- A.B是抛物线y=x²上异于坐标原点O的两不同 动点且AO⊥BO,求三角形ABC重心轨迹方程
- 在平面直角坐标系xOy中,抛物线y=x^2上异于坐标原点O的两不同动点A,B满足AO垂直BO.(1)求三角形AOB的重...
- 在平面直角坐标系xoy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上. (1)求抛物线C的标准方程; (2)求过点F,且与直线OA垂直的直线的方程; (3)设过点M(m,0)(m>0
- 在平面直角坐标系xoy中,抛物线y=x^2上异于坐标原点o的两,点不同动点A,B满足AO垂直于BO,则三角形AOB重心G
- 已知A,B在抛物线y2=2px(p>0)上,O为坐标原点,如果|OA|=|OB|且△AOB的重心恰好是此抛物线的焦点F,则AB直线的方程是( ) A.x-p=0 B.4x-3p=0 C.2x-5p=0 D.2x-5p=0
- 东风不与周郎便,铜雀春深锁二乔赏析
- 甲乙两地相距96千米,快车和慢车同时从两地相向开出,4/5小时相遇,两车的速度比为3:2,快车和慢车每小时
- 作文《一次难忘的谈话?
猜你喜欢