已知函数Y=f(x)的定义域为x∈R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,
证明 ⑴函数Y=f(x)是R上得减函数 ⑵函数Y=f(x)是奇函数.
谁能帮我算一下 我是高一的 谢谢!
人气:269 ℃ 时间:2019-08-18 13:22:00
解答
(1)
设x10
f(x2)
=f[x1+(x2-x1)]
=f(x1)+f(x2-x1)
所以f(x2)-f(x1)=f(x2-x1)
因为对于任意的x>0,恒有f(x)<0
所以由x2-x1>0可得,f(x2-x1)<0
所以f(x2)-f(x1)<0
f(x1)>f(x2)
所以f(x)在R上是减函数
(2)
f(a+b)=f(a)+f(b)
令a=0,则有
f(0+b)=f(0)+f(b)
f(b)=f(0)+f(b)
f(0)=0
令b=-a
f(a-a)=f(a)+f(-a)
f(0)=f(a)+f(-a)
0=f(a)+f(-a)
f(-a)=-f(a)
且函数的定义域是R
所以f(x)是R上的奇函数
推荐
- 已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)
- 已知定义域在R上的函数f(x)对任意实数x.y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)
- (1)已知函数y=f(x)的定义域为R,且当x∈R时,f(m+x)=f(m-x)恒成立,求证y=f(x)的图象关于直线x=m对称; (2)若函数y=log2|ax-1|的图象的对称轴是x=2,求非零实数a的值.
- 已知函数fx的定义域为R,有f(x)+f(y)=f(x+y),x0恒成立
- (1)已知函数y=f(x)的定义域为R,且当x∈R时,f(m+x)=f(m-x)恒成立,求证y=f(x)的图象关于直线x=m对称; (2)若函数y=log2|ax-1|的图象的对称轴是x=2,求非零实数a的值.
- 《郑板桥送贼诗》阅读答案(第三小题)
- KOH,KHCO3,KHSO3,K2CO3,K2SO3这5个的转化关系
- 证明:4k+1形式的正整数,都可以表示为两个正整数的平方和
猜你喜欢
- 求 太阳系的行星模型 与 原子的电子模型 类比
- 已知3m+4n-7=0,3a+4b+8=0,则根号[(m-a)^2+(n-b)^2]的最小值为……怎么解啊
- 初一上册级别的英语小故事 60~100词,最好不要有生词
- 1,4,5,6.每个数用一次,利用加减乘除及括号,结果等于24.
- 已知0<x<pai/2,化简:lg[cos xtan x+1-2sin^2(pai/2)]+lg[跟号2cos(x-pai/4)]-lg(1+sin2x) ...
- 从下列单词中找出不同的:camp April barefoot Valentine tennis winter
- 黑板天天被谁擦用英语怎么说
- 若数列{an}既是等方差数列,又是等差数列,证明该数列为常数列