设曲线C是平面内的两个定点F1、F2(|F1F2|=2c>0)的距离的平方和为常数2a^2(a>0)点的轨迹,请研究曲线C,并给出常数a的几何意义.
这是一道让人没有什么思路的题目OAQ
人气:423 ℃ 时间:2019-11-24 00:31:39
解答
|F1F2|=2c>0,设F1,F2的坐标分别为F1(-c,0),F2(c,0).
C上任意一点P的坐标为(x,y):
|CF1|^2 + |CF2|^2 = 2a^2
|CF1|^2 = (x+c)^2 + y^2
|CF2|^2 = (x-c)^2 + y^2
(x+c)^2 + y^2 + (x-c)^2 + y^2 = 2a^2
简化得:x^2 + y^2 = a^2 - c^2
a < c时,a^2 - c^2 < 0,曲线C不存在
a = c时,a^2 - c^2 = 0,曲线C是原点
a > c时,a^2 - c^2 > 0,曲线C是以原点为圆心,半径为sqrt(a^2-c^2)的圆 (sqrt为平方根).
推荐
- 为什么数学上将椭圆定义为“平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹”
- 1.平面内到两定点F1(-2,0),F2(2,0)的距离之和为4的点M的轨迹是
- 平面内的动点的轨迹的椭圆是椭圆必须满足的2个条件:①到两个定点F1、F2的距离等于2a② 2a>│F1F2│
- 设曲线C是平面内的两个定点F1、F2(|F1F2|=2c>0)的距离的平方和为常数2a^2(a>0)点的轨迹
- 平面上到两定点F1F2(/F1F2/=2C)的距离之和为定值2a的动点的轨迹C,当2a>2c,2a=2c,2a
- “成大事者,争百年,不争一息”的英语翻译
- 根据课文《跨越百年的美丽》的内容,用上“美丽”一词,写两句以上通顺连贯的话
- Big Big World歌词
猜你喜欢