> 数学 >
柯西不等式问题
已知a,b,c属于正数,求证(b^2c^2+c^2a^2+a^2b^2)/(a+b+c) ≥abc
用柯西不等式证明
人气:140 ℃ 时间:2020-04-11 17:02:01
解答
证明:
由柯西不等式及题设,可得:
(1+1+1)×(a²b²+b²c²+c²a²)≥(ab+bc+ca)².
展开,整理,可得:
3a²b²+3b²c²+3c²a²≥a²b²+b²c²+c²a²+2a²bc+2b²ac+2c²ab
移项,整理,可得:
a²b²+b²c²+c²a²≥abc(a+b+c)
两边同除以a+b+c,可知:
(a²b²+b²c²+c²a²)/(a+b+c)≥abc
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版