在四棱锥S-ABCD中底面ABCD为正方形,侧棱SD⊥底面ABCD,E.F分别为AB,SC中点,证明:EF‖平面SAD
人气:306 ℃ 时间:2019-12-08 22:18:40
解答
侧棱SD⊥底面ABCD这一条件多余.证明:在平面SDC内作FG平行于CD,交SD与点G,连接AG;过F作三角形CDS边CD上的高FH,垂足为H,连接EH因为FG平行于CD,且CD平行于AE(已知+正方形性质) 所以FG平行于AE又因为F,E为中点,所以F...
推荐
- 四棱锥 SABCD 底面ABCD为正方形,测棱SD垂直底面 E,F为AB SC 中点 求证 EF//平面SA
- 四棱锥 S-ABCD 底面ABCD为正方形,侧棱SD垂直底面 E,F为AB SC 中点 设SD=2DC,求2面角A-EF-D大小
- 四棱锥P-ABCD 底面ABCD为平行四边形 E、F分别为PC 、AB中点 证明EF
- 在四棱锥S-ABCD中底面ABCD为正方形,侧棱SD⊥底面ABCD,E.F分别为AB,SC中点,SD=2DC,求二面角A-EF-D的正切
- 如图,在四棱锥s—ABCD中,底面ABCD为平行四边形,E,F分别为BC,SD中点,求证,EF∥平面SAB,在直线SC上
- 第8天指的是时刻还是时间间隔?
- 思维跟思想有什么区别
猜你喜欢