| cos22x+sin22x−2sin2xcos2x |
| cos22x−sin22x |
=
| (sin2x−cos2x)2 |
| (cos2x+sin2x)(cos2x−sin2x) |
=
| cos2x−sin2x |
| sin2x+cos2x |
=
| 1−tan2x |
| 1+tan2x |
| 1−2sin2xcos2x |
| cos22x−sin22x |
| 1−tan2x |
| 1+tan2x |
| cos22x+sin22x−2sin2xcos2x |
| cos22x−sin22x |
| (sin2x−cos2x)2 |
| (cos2x+sin2x)(cos2x−sin2x) |
| cos2x−sin2x |
| sin2x+cos2x |
| 1−tan2x |
| 1+tan2x |