设an=1+1/2+1/3+...+1/n是否存在关于n的整式g(n),使得等式a1+a2+...+a(n-1)=g(n)(an-1)对大于1的自然数n都成立?证明你的结论
人气:496 ℃ 时间:2020-06-02 19:17:33
解答
解法一 证明:假设存在g(n)=a1+a2+...+an-1(n-1为下标)=g(n)(an-1)(n-1非下标)则g(n)=g(n)*an-g(n),2g(n)=g(n)*an,an=2,所以g(n)=a1+a2+...+an-1(n-1为下标)=2(n-1)解法一:a(1)=1a(2)=1+1/2a(3)=1+1/2+1/3……a(n-...
推荐
猜你喜欢