> 数学 >
设A是n阶实对称矩阵,A^2=A,证明存在正交矩阵.
设A是n阶实对称矩阵,A^2=A,证明存在正交矩阵T,使得T^(-1)AT=diag(1,1,1,1...0,0)
人气:312 ℃ 时间:2019-12-19 02:36:50
解答
由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可
由于
A^2=A,所以A的特征是0或1,证毕
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版