已知定,在R上的函数f(x)=asin(ωx)+bcos(ωx),(其中ω>0,a>0,b>0)的周期为π,f(x)≤2,f(π/4)=√3
(1)求f(x)表达式
(2)求递增空间
人气:137 ℃ 时间:2020-01-03 22:55:25
解答
(1),f(x)=asinωx+bcosωx=
√a^2+b^2 sin(ωx+t),其中t为辅助角,且tant=b/a ,
∴T=2π/w =π,∴ω=2
∵ f(π/4 )=√3 ,∴asinπ/2+bcosπ/2 =√3 ,即a=√3
∵f(x)的最大值为2,∴
√(a^2+b^2) =2,解得,b=1
∴ f(x)=√3sin2x+cos2x
(2)由(1)得,f(x)=√3sin2x+cos2x =2sin(2x+π/6 )
令 -π/2 +2kπ ≤2x+π/6 ≤π/2 +2kπ ,k∈Z,解得,kπ-π/3 ≤x≤kπ+π/6 ,k∈Z
∴函数的单调递增区间 [kπ-π/3 ,kπ+π/6 ],k∈Z ;能给一下asinωx+bcosωx化简吗?
推荐
- 已知定义在R上的函数f(x)=asinωx+bcosωx ),(其中ω>0,a>0,b>0)的最小正周期为π
- 设有函数f(x)=asin(kx-π/3)和函数g(x)=bcos(2kx-π/6),(a>0,b>0,k>o),若它们的最小正周期之和
- 已知函数f(x)=Asinψx+Bcosψx(其中A,B,ψ是实常数,ψ>0)的最小正周期为2,
- 设函数f(x)=asinωx+bcosωx(ω>0)已知函数f(x)的最小正周期为π 切当x=π/6是f(x)取的最大值为2 补充:↓
- 已知函数f(x)=asin(πx+α﹚+bcos(πx+β﹚+4,且f(2004)=3,则f(2011)=__
- 物理的题,功率和机械效率答案
- comunnicate什么意思?还有i can do this strange world怎么翻译比较好?
- 学校组织七年级学生参加活动原计划租42座客车16辆正好坐满,由于126名学生骑自行车,学校改变了租车方案
猜你喜欢