设函数f(x)在x=o处连续,若x趋向于0时limf(x)/x存在,则f '(0)是否存在?为什么
人气:229 ℃ 时间:2020-03-05 08:10:36
解答
存在,因为
x趋向于0时limf(x)/x存在且x=o处连续所以f(0)=0
f '(0) = lim(x->0) f(0+x)-f(0) / x=lim(x->0) f(x)/x
所以存在
推荐
- 设函数f(x)在x=o处连续,若x趋向于0时limf(x)/x存在,则f '(0)是否存在?为什么.
- 若函数f(x)在x=0处连续且limf(x)/x(x趋向于零时)存在,试证f(x)在x=0处可导
- 设函数f(x)在x=0处连续,若x趋向于0时limf(x)/x存在
- 设函数f(x)在x=0处连续,在(0,c)(c>0)内可导,且limf(x)'=A,x趋向于0,证明:f+(0)'存在,且f+(0)'=A
- 证明:若函数f(x) 在(-∞,+∞) 内连续,且limf(x) 存在,则f(x) 必在(-∞,+∞) 内有界.
- 《飞鸟集》是以什么为主题的?
- 一般将污染物分为哪几类
- 已知斜棱柱直截面(垂直于侧棱的截面)周长为8,高为4,侧棱与底面所成的角为60度,则侧棱柱的侧面积为多少
猜你喜欢