
过点O作OE⊥PA,OF⊥PB,因为DO⊥平面APB,则DE⊥PA,DF⊥PB.
△DEP≌△DFP,∴EP=FP,∴△OEP≌△OFP,
因为∠APC=∠BPC=60°,所以点O在∠APB的平分线上,即∠OPE=30°.
设PE=1,∵∠OPE=30°∴OP=
| 1 |
| cos30° |
2
| ||
| 3 |
在直角△PED中,∠DPE=60°,PE=1,则PD=2.
在直角△DOP中,OP=
2
| ||
| 3 |
| OP |
| PD |
| ||
| 3 |
即直线PC与平面PAB所成角的余弦值是
| ||
| 3 |
故选C.
A. | 1 |
| 2 |
| ||
| 2 |
| ||
| 3 |
| ||
| 3 |

| 1 |
| cos30° |
2
| ||
| 3 |
2
| ||
| 3 |
| OP |
| PD |
| ||
| 3 |
| ||
| 3 |