一道高中必修2的题.求函数y=[√(x+1)^2+1]+[√(x-3)^2+4]的最小值,并解释其几何意义.
人气:434 ℃ 时间:2020-05-08 14:28:39
解答
y=√[(x+1)^2+(0-1)^2]+√[(x-3)^2+(0+2)^2]
所以y就是x轴上一点P(x,0)到A(-1,1)和B(3,-2)的距离之和
三角形PAB中,PA+PB>AB
所以当PAB在一直线且P在AB之间时,PA+PB=AB,此时y最小
最小值=AB
AB在x轴两侧,所以P就是AB和x轴交点
所以最小值存在
=√[(3+1)^2+(-2-1)^2]=5
推荐
猜你喜欢
- 请问I am lily who live in Paris.和 I am lily who lives in Paris 哪个正确
- 一个长方体冰柜,从里面量90cm,宽50cm,深50cm.它的容积是多少立方分米
- 美学中的名词解释 .
- “1.5*X的值等于3.6:4.8的值”怎么算比例(数学)
- 英语翻译
- 复合重句 中,where 和which用法有点歧义,如下题
- 甲乙两人相向而行甲的速度是20千米/小时,乙的速度是18千米/小时,他们在离中点3千米是相遇,问全?
- 在四边形ABCD中,AB>CD.E.F分别是对角线BD.AC的中点,求证:EF>1/2(AB-CD)