> 数学 >
lim (x→0)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]求极限
人气:267 ℃ 时间:2020-04-11 08:50:46
解答
lim (x→0)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]=0
是不是x-->∞
[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]
={[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]}/1
分子分母同时乘以[√﹙x²﹢x+1﹚]+[√﹙x²-x+1﹚]
=[(x²+x+1)-(x²-x+1)/[√﹙x²﹢x+1﹚]+[√﹙x²-x+1﹚]
=2x/[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]
∴ lim (x→∞)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]
=lim (x→∞)2x/[√﹙x²﹢x+1﹚]+[√﹙x²-x+1﹚]
=2 /2
=1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版