求极限lim(1-cosxy)/x²y²,xy都趋于0
人气:107 ℃ 时间:2020-01-26 00:24:36
解答
假设沿着 y = kx 趋近于 原点,则:
lim[1-cos(xy)]/(xy)^2
=lim[1-cos(kx)^2]/(k^2*x^4)
=lim 2{sin[(kx)^2/2]}^2/{[(kx)^2/2]^2 * 4/k^2}
=lim{sin[(kx)^2/2]}^2/{[(kx)^2/2]^2 * 2/k^2}
=lim{sin[(kx)^2/2]/[(kx)^2/2]}^2 /(2/k^2)
=lim 1/(2/k^2)
=k^2/2
因为 k 是任意直线的斜率,所以,上面的极限是不存在的.
推荐
- 求极限lim(x→1 y→2) (x²+y²)/xy
- 求极限lim(x,y)→(+∞,+∞) [(xy)/(x^2+y^2)]^xy.
- 求极限:1)x趋于0,y趋于1时,lim(1-xy)/(x^2+y^2)
- lim (x→0)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]求极限
- 求Lim[(xy+1)^0.5-1]/(x+y) x->0 y->0的极限
- 16的4分之3次方是多少
- 分式2(x+1)分之x与x-1分之1的最简公分母
- 跳绳次数入下19,23,26,29,28,3,2,34,35,41,33,31,25,27,31,36,37,24,31,29,26,30众数是多少?
猜你喜欢