> 数学 >
有f(x),满足af(x)+bf(1/x)=2x+3/x,|a|≠|b|,且f(0)=0,证明f(x)是奇函数
人气:370 ℃ 时间:2019-08-20 05:50:43
解答
af(x)+bf(1/x)=2x+3/x
则有:af(1/x)+bf(x)=2/x+3x
两个式子化简消去f(1/x)得
f(x)=(2ax+3a/x-2b/x-3bx)/(a^2-b^2)
f(-x)=-f(x)
则f(x)为奇函数f(x)=(2ax+3a/x-2b/x-3bx)/(a^2-b^2)怎么解?什么意思?你是不知道怎么来的还是怎么?速度点,等等要出门了对第一个式子*a第二个式子*b自己算下,不好意思,要出门了
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版