设m*n矩阵A的秩R(A)=n-1,且K1,K2 是齐次方程AX=0的两个不同的解,则AX=O的通解为多少?
我觉得c(K1+k2)和c(K1-K2)都是通解,因为线性无关解向量只有一个,就是K2,然后另外一个就是零向量,但是答案是c(K1-K2),c为任意常数..
人气:239 ℃ 时间:2020-01-31 22:44:26
解答
k1+k2 可能为零向量
而 k1-k2 ≠ 0
故为基础解系k1,k2其中一个必是零向量? 哪有这结论?η是解, 则 -η 也是解非零解怎么会只有一个?!!!若齐次线性方程组有非零解, 则有无穷多解!齐次线性方程组的解的线性组合仍是它的解, 这是解的性质若a是非零解, 则 ka (k≠0) 都是非零解.好好看看教材哈基础解系含一个向量,所以任一非零解即基础解系
推荐
- 已知m×n矩阵A的秩为n-1,α1,α2是齐次线性方程组AX=0的两个不同的解,k为任意常数,则方程组AX=0的通解为( ) A.kα1 B.kα2 C.k(α1+α2) D.k(α1-α2)
- 已知A是3阶矩阵,非齐次线性方程AX=β有通解β+k1α1+k2α2,其中k1k1为任意常数,求A的特征值和特征向量.
- .设A为n阶矩阵,秩(A)=n-1,,是齐次线性方程组Ax=0两个不同的解,则Ax=0的通解是
- 设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为 aη1+bη2 ..
- 设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为_.
- the grass is eaten to less than five centimeters.to在这里是什么意思,
- 1、甲、乙、丙3位同学到办公室找老师当面批改作业.老师批改他们作业的时间分别是2分钟、1分钟、3分钟.按什么顺序批改,他们等候时间的总和最少?等候时间的总和最少是多少分钟?
- 已知一个正方形的边长增加3,则其面积增加39,请你设计一种方案,使该图形的各角和周长保持不变,而面积减少4
猜你喜欢