> 数学 >
如图,△ABC中,∠ABC=90°,BA=BC,△BEF为等腰直角三角形,∠BEF=90°,M为AF的中点,求证:ME=
1
2
CF.
人气:122 ℃ 时间:2020-04-27 03:59:03
解答
证明:如图,延长EF到D,使DE=EF,连接AD、BD,
∵△BEF为等腰直角三角形,∠BEF=90°,
∴∠BFE=45°,BE⊥DF,
∴BE垂直平分DF,
∴∠BDE=45°,
∴△BDF是等腰直角三角形,
∴BD=BF,∠DBF=90°,
∵∠CBF+∠ABF=∠ABC=90°,
∠ABD+∠ABF=∠DBF=90°,
∴∠CBF=∠ABD,
在△ABD和△CBF中,
AB=BC
∠CBF=∠ABD
BD=BF

∴△ABD≌△CBF(SAS),
∴AD=CF,
∵M为AF的中点,DE=EF,
∴ME是△ADF的中位线,
∴ME=
1
2
AD,
∴ME=
1
2
CF.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版