(1)设
| x2+3x |
| x2+x-4 |
则原方程化为
| 1 |
| 2 |
| 1 |
| 3y |
| 11 |
| 12 |
解得x1=-1,x2=-4,x3,4=
5±
| ||
| 2 |
(2)设1999-x=a,x-1998=b,1999-x+x-1998=1,
则原方程a3+b3=(a+b)3得ab=0,即(x-1998)=0
∴x1=1999,x2=1998
(3)设y=
| 13-x |
| x+1 |
| 13x-x2 |
| x+1 |
| x2+13 |
| x+1 |
∴xy,x+y是方程x2-13x+42=0的两个根,
解得x1=6,x2=7,即
|
|
进而可得x1=1,x2=3+
| 2 |
| 2 |
