> 数学 >
已知f(x)=
a
b
−1
,其中向量
a
=(sin2x,2cosx),
b
=(
3
,cosx)
,(x∈R).
(1) 求f(x)的最小正周期和最小值;
(2) 在△ABC中,角A、B、C的对边分别为a、b、c,若f(
A
4
)=
3
,a=2
13
,b=8,求边长c的值.
人气:323 ℃ 时间:2020-05-19 02:08:16
解答
∵(1)f(x)=
a
b
-1=(sin2x,2cosx)•(
3
,cosx)-1
=
3
sin2x+2cos2x-1=
3
sin2x+cos2x=2sin(2x+
π
6

∴f(x)的最小正周期为π,最小值为-2
(2)f(
A
4
)=2sin(
A
2
+
π
6
)=
3

∴sin(
A
2
+
π
6
)=
3
2

A
2
+
π
6
=
π
3
∴A=
π
3
或A=π(舍去)
由余弦定理得a2=b2+c2-2bccosA
52=64+c2-8c即c2-8c+12=0
从而c=2或c=6
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版