已知函数f(x)=(a-1/2)x²+lnx(a∈R).(1)当a=1,求函数f(x)在区间[1,e]上的最大值和最小值.(2)若f(x)>0有解,求a的取值范围.
人气:379 ℃ 时间:2019-08-18 13:23:53
解答
第一问
由lnx可得x>0
当a=1时,f(x)=(1/2)x²+lnx
f'(x)=x+1/x
f''(x)=1-1/x²
故当1-1/x²>0,即x>1时,f(x)单调递增
1-1/x²
推荐
- 已知函数f(x)=(1/2)x²+lnx-1,(1)求函数fx在区间[1,e]上的最大值和最小值
- 已知函数f(x)=lnx−a/x (1)求函数f(x)的单调增区间. (2)若函数f(x)在[1,e]上的最小值为3/2,求实数a的值.
- 已知函数f(x)=(a−1/2)x2+lnx.(a∈R) (1)当a=1时,求f(x)在区间[1,e]上的最大值和最小值; (2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方,求a的取值范围.
- 已知函数f(x)=1/2x2-lnx,求f(x)在区间[1,e]上的最大值和最小值
- 求函数f(x)=x²-4x+(2-a)lnx((a≤2(e-1)²))在区间[e,e²]上的最小值.
- 三打白骨精 作者为什么不写悟空一次就打死白骨精,而要写 "三打
- will,our,you,show,school,kate,around(.)请帮忙连词组句,
- 一些初二的题目,个位帮个忙
猜你喜欢