用夹逼定理证明
lim[n→∞] {1/n^2 + 1/(n+1)^2 +∧+1/(2n)^2} =0
人气:188 ℃ 时间:2020-05-25 16:57:24
解答
在被求的极限式子中分母最小的是n²,所以把所有的分母取为n²,那么整个式子就放大了
于是有
0≤ 1/n²+1/(n+1)²+...+1/(2n²)≤1/n²+1/n²+...+1/n²=(n+1)/n²=1/n²+1/n-->0,当n-->∞时
所以可知上面左右两个式子当n趋于∞时极限均为0
从而中间的极限当n趋于∞时极限也为0
注意使用夹逼准则证明的时候放大缩小的量均要趋于同一个极限!
推荐
猜你喜欢
- l am not good at piaying basketball.(同义句)l ____ ____ ____ ____ playing basketball.
- 在三角形ABC中,角C=60度,高BE经过高AD的中点F,BE=10CM,求BF,EF的长
- 用炭粉在高温条件下还原CuO的缺点,说全面点.
- 在每个工序中确定加工表面尺寸和位置度所依据的基准是什么?
- 血红蛋白分子中含有574个氨基酸,4条肽链,在形成次蛋白质分子是,脱下的分子数和含有-NH2的数目至少是
- 为什么一天当中,气温最高值出现在午后14时?而不是12点?
- 五分之一:六分之一的最简整数比是5:6,这题对的错的?
- 4/9:1/6=x:1/3 解方程 会的大神给我解了它