已知椭圆x2/m+1 +y2=1的两个焦点是F1(-c,0),F2(c,0)(c>0),设E是直线y=x+2与椭圆的
一个公共点,求|EF1|+|EF2|取得最小值时椭圆的方程.
人气:298 ℃ 时间:2020-02-03 22:31:35
解答
焦点在x轴,
∴√(m+1)>1,
当直线y=x+2与椭圆相交或相切时,才有公共点,而只有一个公共点,即相切时则是|EF1|+|EF2|最小值,
y=x+2,代入椭圆方程,
x^2+(x+2)^2(m+1)=m+1,
(2+m)x^2+4(m+1)x+3(m+1)=0,
当直线和椭圆相交时,判别式△>=0,
16(m+1)^2-4*(2+m)*3(m+1)>=0,
m^2-m-2>=0,
(m-2)(m+1)>=0,
m>=2,或m=2,
∵根据椭圆定义,|EF1|+|EF2|=2a=2√(m+1),
m(min)=2,
∴|EF1|+|EF2|最小为2√3,
∴|EF1|+|EF2|取得最小值时椭圆的方程是:
x^2/3+y^2=1.
推荐
- 设椭圆x2/m+1+y2=1的两个焦点是F1(-c,0)与F2(c,0),(c>0),设E是直线Y=X+2与椭圆的一个公共点,求使得|EF
- 已知F1(-3,0)、F2(3,0)是椭圆x2/m+y2/n=1的两个焦点,p在椭圆上,∠F1PF2=а,且当а=2π/3时,三角形F1PF2面积最大,求椭圆的方程
- 已知椭圆x^2/9 +y^2/5 =1的焦点为F1、F2,在直线x+y-6=0上找一点M ,求以F1、F2 为焦点,通过点M且长轴最短的椭圆方程.
- 已知椭圆C:x2/a2+y2/b2=1的左右焦点为F1 F2,离心率为e,直线l:y=ex+a与x轴y轴分别交于点A,B,M是直线l
- m大于1,l:x-my-m^2/2=0,C:x2/m^2+y^2=1,F1,F2为左右焦点,设直线l与椭圆交与A,B两点,三角形AF1F2,接下
- 一个长6米,宽3米,高2米的房间,放一根竹竿,竹竿最长多少米?
- (2012•顺义区二模)下列关于有机物的叙述正确的是( ) A.汽油、柴油和植物油都是碳氢化合物 B.棉花和合成纤维的主要成分均为纤维素 C.乙烯和苯蒸气都能使溴水褪色,不能鉴别乙烯
- 什么情况下1+1等于3?
猜你喜欢