∴∠BPC=∠BRE,∠BCP=∠E,
∴△BCP∽△BER;
同理可得∠CDE=∠ACD,∠PQC=∠DQR,
∴△PCQ∽△RDQ;
∵四边形ABCD是平行四边形,
∴∠BAP=∠PCQ,
∵∠APB=∠CPQ,
∴△PCQ∽△PAB;
∵△PCQ∽△RDQ,△PCQ∽△PAB,
∴△PAB∽△RDQ.
![](http://hiphotos.baidu.com/zhidao/pic/item/e1fe9925bc315c60c02dfa5e8eb1cb13485477c3.jpg)
(2)∵四边形ABCD和四边形ACED都是平行四边形,
∴BC=AD=CE,
∵AC∥DE,
∴BC:CE=BP:PR,
∴BP=PR,
∴PC是△BER的中位线,
∴BP=PR,
PC |
RE |
1 |
2 |
又∵PC∥DR,
∴△PCQ∽△RDQ.
又∵点R是DE中点,
∴DR=RE.
PQ |
QR |
PC |
DR |
PC |
RE |
1 |
2 |
∴QR=2PQ.
又∵BP=PR=PQ+QR=3PQ,
∴BP:PQ:QR=3:1:2