直线 x=√2*t,y= -1+t 可化为 x-√2*y+√2=0 ,
曲线上的点到直线的距离为 d=|√2cosθ-√2sinθ+√2| / √(1+2)=|2cos(θ+π/4)+√2| / √3 ,
因此最大值为 (2+√2) / √3 .用参数做的跟普通代数的答案不一样呢?前面有误,以此为准。
直线 x=√2*t,y= -1+t 可化为 x-√2*y-√2=0 ,
曲线上的点到直线的距离为 d=|√2cosθ-√2sinθ-√2| / √(1+2)=|2cos(θ+π/4)-√2| / √3 ,
因此最大值为 |-2-√2| / √3=(2√3+√6)/3 。