> 数学 >
设函数f(x)=2sinxcos^2φ/2+cosxsinφ-sinx(0<φ<π)在x=π处取得最小值.求f(x)的单调递增区间
人气:157 ℃ 时间:2020-06-13 01:30:19
解答
f(x)=2sinxcos^2(φ/2)+cosxsinφ-sinx
=sinx*[2cos^2(φ/2) -1] +cosxsinφ
=sinxcosφ +cosxsinφ
=sin(x+φ)
由于f(x)在x=π处有最小值,则sin(π+φ)=-1
即sinφ=1
因为0
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版