> 数学 >
高二数学:过抛物线 y^2=2px(P>0)的焦点且倾斜角为60°
过抛物线y2=2px(p>0)的焦点F且倾斜角为60°的直线l与抛物线在第一、四象限分别交于A、B两点,则 |AF|/|BF|的值等于(  )答案是3,不知道怎么算,求过程,谢谢
人气:317 ℃ 时间:2020-05-25 20:50:33
解答
y2=2px(p>0)
焦点F(p/2,0)
倾斜角为60°的直线k=tan60°=√3
直线l方程:y=√3(x-p/2)
代入 y^2=2px:
3(x-p/2)^2 = 2px
3x^2-5px+3p^2/4=0
(3x-1/2p)(x-3/2p) = 0
A在第一象限,B在第二象限,斜率k>0,∴xA>xB
∴xA=3/2p,xB= 1/6p
|AF|/|BF| = |xA-xF|/|xF-xP| = |3/2p-1/2p|/|1/2p-1/6p| = |p|/|1/3p| = 1/(1/3) = 3请问这个式子是什么意思|AF|/|BF| = |xA-xF|/|xF-xP| ?xA和xF这些是表示横坐标吗?为什么相减会等于AF?xA和xF这些是表示横坐标吗?是的!为什么相减会等于AF?谁说相减就等于AF了,在这里是比例关系:|AF|/|BF| = |xA-xF|/|xF-xP|
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版