过F作FH∥AB交CE于H,∵FH∥AB,
∴∠HFD=∠EBD,
∵D为BF的中点,
∴BD=DF,
在△BED和△FHD中
|
∴△BED≌△FHD(AAS),
∴FH=BE,
∵FH∥AB,
∴△CFH∽△CAE,
∴HF:AE=CF:AC,
∵AC=AB,CF=AE,
∴AF=BE=HF.
设AC=AB=1,AE=x,则
| HF |
| AE |
| CF |
| AC |
| 1-x |
| x |
| x |
| 1 |
解得x=
| ||
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| ||
| 2 |
∴AE:AF=
| ||
| 2 |

过F作FH∥AB交CE于H,
|
| HF |
| AE |
| CF |
| AC |
| 1-x |
| x |
| x |
| 1 |
| ||
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| ||
| 2 |
| ||
| 2 |