> 数学 >
函数求极限 lim[(1+x)^(1/x)-e]/x x→无穷
可能里面的函数不好看清,对这个函数求极限(1+x)的1/x次方再减e,最后除x,其中x→无穷.希望写出分解步骤.
说错了,是X→0,更正下是X→0,不是无穷,更正下是X→0,不是无穷,更正下是X→0,不是无穷
人气:294 ℃ 时间:2019-10-19 23:45:53
解答
∵ lim x^(1/x)
x→∞
=lim e^[lnx^(1/x)]
x→∞
=lim e^[(1/x)lnx]
x→∞
=lim e^[1/x] = 1
x→∞
∴ lim (1+x)^(1/x)
x→∞
∴ lim (1+x)^{[1/(x+1)][(x+1)/x]}
x→∞
=1^1 = 1

∴ lim [(1+x)^(1/x) - e]/x = (1 - e)/ ∞ = 0
x→∞
楼主已经更正,按照新的极限要求,重新解答如下:
∵ lim (1+x)^(1/x) = e
x→0
∴ lim [(1+x)^(1/x) - e]/x (0/0型)
x→0
=lim {[(1+x)^(1/x)][x/(1+x) - ln(1+x)]/x² - 0}/1
x→0
=lim e[x/(1+x) - ln(1+x)]/x²
x→0
=lim e[x - (1+x)ln(1+x)]/(x²+ x³)(0/0型)
x→0
=lim e[1 - ln(1+x) - 1]/(2x + 3x²)
x→0
=lim -eln(1+x)/(2x + 3x²) (0/0型)
x→0
=lim -e/[(1+x)(2 + 6x)]
x→0
= -e/2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版