已知sinα=asinβ,tanα=btanβ,α为锐角,求证:(cosα)^2=(a^2-1)/(b^2-1).
人气:477 ℃ 时间:2020-04-14 03:32:53
解答
(sinβ)^2=(sinα)^2/a^2,(cosβ)^2=1-(sinβ)^2=[a^2-(sinα)^2]/a^2.
(tanβ)^2=(sinα)^2/[a^2-(sinα)^2].
(tanα)^2=b^2*(tanβ)^2=b^2(sinα)^2/[a^2-(sinα)^2].
1/(cosα)^2=b^2/[a^2-(sinα)^2].
b^2(cosα)^2=a^2-1+(cosα)^2.
(cosα)^2=(a^2-1)/(b^2-1).
推荐
- 已知sinθ=asinΦ;tanθ=btanΦ;θ为锐角,求证cosθ=((a^2-1)/(b^2-1))^(1/2)
- 已知sinΦ=asinω,tanΦ=btanω,其中Φ为锐角,求证cosΦ=根号下(a^2-1)/(b^2-1)
- 已知sinθ=asinβ,tanθ=btanβ,其中θ为锐角,求证:cosθ=√([a^2-1)/(b^2-1)]
- 1.已知sinθ=asinβ,tanθ=btanβ,其中θ为锐角,求证:cosθ=√((a^2-1)/(b^2-1))
- 已知tan^2α=2tan^β+1 求证:sin^2β=asin^2α-1
- 简单就是幸福 作文
- 维新运动失败的原因和教训是什么
- 夫如是,故远人不服,则修文德以来之;既来之,则安之.《季氏将伐颛臾》
猜你喜欢