> 数学 >
设f(x)在[0,1]上连续,且f(0)=0,f(1)=1,证明至少存在一点ξ属于(0,1),使f(ξ)=1-ξ
人气:443 ℃ 时间:2020-06-09 08:50:43
解答
设g(x)=f(x)-(1-x)
则g(0)=-1,g(1)=1,且g(x)在【0,1】上连续,所以存在一点ξ属于(0,1),使g(ξ)=0,即
f(ξ)-(1-ξ)=0,所以
f(ξ)=1-ξ
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版