又cos2α=−
3 |
5 |
π |
2 |
于是有sin2α=
4 |
5 |
sin2α |
cos2α |
4 |
3 |
所以tan(
π |
4 |
tan
| ||
1−tan
|
1−
| ||
1+
|
1 |
7 |
方法二:α为第三象限的角,cos2α=−
3 |
5 |
3 |
2 |
4 |
5 |
π |
4 |
sin(
| ||
cos(
|
sin
| ||||
cos
|
cos2α+sin2α |
cos2α−sin2α |
1 |
7 |
3 |
5 |
π |
4 |
3 |
5 |
π |
2 |
4 |
5 |
sin2α |
cos2α |
4 |
3 |
π |
4 |
tan
| ||
1−tan
|
1−
| ||
1+
|
1 |
7 |
3 |
5 |
3 |
2 |
4 |
5 |
π |
4 |
sin(
| ||
cos(
|
sin
| ||||
cos
|
cos2α+sin2α |
cos2α−sin2α |
1 |
7 |