| m |
| n |
| m |
| n |
由正弦定理可得(2sinC+sinB)cosA+sinAcosB=0,
即2sinCcosA+(sinBcosA+sinAcosB)=0,
整理可得sinC+2sinCcosA=0.
∵0<C<π,sinC>0,
∴cosA=-
| 1 |
| 2 |
∴A=
| 2π |
| 3 |
(2)由余弦定理,a2=b2+c2-2bccosA,
即16=b2+c2+bc≥3bc,
故bc≤
| 16 |
| 3 |
故△ABC的面积为S=
| 1 |
| 2 |
| ||
| 4 |
4
| ||
| 3 |
当且仅当b=c=
4
| ||
| 3 |
4
| ||
| 3 |
| m |
| n |
| m |
| n |
| m |
| n |
| m |
| n |
| 1 |
| 2 |
| 2π |
| 3 |
| 16 |
| 3 |
| 1 |
| 2 |
| ||
| 4 |
4
| ||
| 3 |
4
| ||
| 3 |
4
| ||
| 3 |